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Domain growth kinetics in a thermally bistable fluid with heat diffusion is studied. The time evolution
of interfaces between the stable phases is calculated numerically in two dimensions and compared to
some general results derived analytically. The qualitative behavior is found to be similar to the previous-
ly studied cases where fluid dynamics was neglected. There are, however, several important differences
such as the value of the dynamical exponent, which determines the power law of the system’s correlation
length growth. The introduction of fluid motion into the model introduces additional properties, unfam-
iliar to previously studied systems, like the change of the pressure or the size of the system. This
behavior is due to the advection of mass. The present model may have general relevance to any system
modeled by a real Ginzburg-Landau-type equation coupled to fluid dynamical conservation equations.
In particular, it is a step forward on the way to a faithful modeling of thermally bistable cloudy astro-

physical media.

PACS number(s): 47.70.—n, 64.90.+b, 95.30.Lz

I. INTRODUCTION

Thermally unstable fluid media appear quite often in
nature. Optically thin plasmas subject to radiative cool-
ing, which are thermally bistable, have been invoked in a
number of astrophysical contexts (see, e.g., [1-5] and
references therein) and in laboratory plasmas as well (e.g.,
()8

These systems are characterized by a heat equation,
which for isobaric conditions can sometimes be casted in
a form of a reaction-diffusion equation, resembling the
usual real Landau-Ginzburg equation with a bistable po-
tential functional (see Ref. [15]). However, since the
medium is a fluid and the different stable phases have
different temperatures (and thus densities), mass advec-
tion and not only heat diffusion is expected and fluid
motion has to be included in the model.

Linear analysis methods exploring the existence of
thermal instabilities and their properties have been exten-
sively employed starting from the work of Field [7] (e.g.,
Refs. [8-13]). The problem has also been approached
numerically in various astrophysical contexts [3,4,14].
An alternative approach to the nonlinear problem, con-
sidering the medium as a pattern forming system has
been introduced by Elphick, Regev, and Spiegel [15].
They used the simplest approach to the dynamics of
fronts separating the two stable phases, looking at a one-
dimensional system, with the fluid dynamics suppressed.
Following Zel’dovich and Pikel’ner [16], who recognized
the importance of and defined a stationary (in one dimen-
sion) front existing for a constant, critical value of the
pressure, the work in Ref. [15] described the structure
and the dynamics of such a phase front and the interac-
tion between different fronts. They found that on the
way to a slow phase separation it is possible to trigger the
formation of complex chaotic structures by small spatial
perturbations in the cooling function.

This approach can be expanded to the full one-
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dimensional (1D) hydrodynamic model using a Lagrang-
ian coordinate, as was shown by Meerson [17]. Indeed,
the analysis of Elphick, Regev, and Shaviv [18] has
shown that this case is completely equivalent to the pure-
ly thermal model. Aranson, Meerson, and Sasorov [19]
have recently looked in detail into the 1D hydrodynamic
problem, examining the effects of boundary conditions on
the pressure development in the system. The analysis in
Ref. [18] was done for the case of “open boundaries”
(Neumann boundary conditions) and for a pressure equal
to its critical value (when the potential functional is sym-
metric). With these boundary conditions the asymmetric
case gives rise to a fast disappearance of the metastable
phase and uniformity of the system. Reference [19] ex-
amined the case of “closed boundaries” with no mass flux
allowed (Cauchy boundary conditions) and proved that
the pressure will approach in time its critical value (sym-
metric potential functional) giving rise finally to a rather
simple but very persistent pattern of the cold and hot
phases coexisting for very long times. While the case
studied in Ref. [19] is more appropriate to laboratory
plasmas, astrophysical plasmas are more naturally
modeled using free boundaries. The critical pressure
may, however, be attained by some sort of confinement
(e.g., gravitational), as suggested in Ref. [19], but on a
large scale. The model in Ref. [18] can then be viable as a
description of a smaller scale subsystem, after the pres-
sure has become critical.

The extension of the problem to two dimensions is
rather problematic, as the semianalytical methods used in
Refs. [15] and [18] are not easily applicable. There seems
to be no choice but to have recourse to heuristic analyti-
cal estimates or fully numerical modeling. Some observa-
tions, however, can be made at the outset. First, it is clear
that in the purely thermal and isobaric case in more than
one dimension a closed front is not stationary, even if the
pressure is critical (see Ref. [15] for a proof). The fronts
develop towards curve shortening [20] and their motion
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depends on the curvature. If the pressure is not critical,
front motion is additionally driven by the asymmetry of
the phases [21,22]. If many fronts are present and are
close to each other, front interactions may also play a
role. Aharonson, Regev, and Shaviv [23], have recently
investigated numerically the behavior of thermally bi-
stable fronts in two dimensions, without the inclusion of
fluid motion and for uniform critical pressure systems.
Their investigation showed that indeed the two-
dimensional systems may exhibit a richer behavior than
the 1D case when spatial perturbations are included. The
complex nature of the cloud patterns was described with
the help of the fractal dimension of the interfaces and the
dynamical exponent (the exponent with which the corre-
lation length grows as a function of time). Like the 1D
models, this system can under certain spatial and tem-
poral perturbations remain mixed and complex.

The aim of the present work, as a next step, is to ex-
tend the investigation of the 2D model by including fluid
dynamical effects to the already existing physical effects
of thermal diffusion and bistability. We shall also drop
the assumption of a constant pressure, although, when
the dynamic time is much shorter than the thermal one
the isobaric assumption is excellent. The paper is organ-
ized in the following way. Section II describes the
theoretical model and the known analytical and qualita-
tively expected results, some of them derived using sta-
tistical methods. In Sec. III the numerical computations
which support the analytical estimates are described. We
conclude with a discussion of the results, their
significance and some of the consequences in Sec. IV.

II. THE THEORETICAL MODEL

A. Assumptions and equations

Consider a medium with a uniform chemical composi-
tion, characterized by the temperature 7'(r,t), the pres-
sure p (r,¢), and the velocity v(r,?) fields. We assume that
the total local cooling function is given and that there is
spatial thermal coupling via heat diffusion. The conser-
vation of mass, momentum, and energy give the following
set of equations (in addition, we include the perfect gas
equation of state).

93+V-(pv)=0 ,

3 .1
v
P -a-f-v-Vv +Vp=0, (2.2)
_1 o .. Y _,y.
7—1 | ot +v-Vp |+ 7,_IpV v+p.L(T,p)
—=V-(kVT)=0, (2.3)
R
——pT=0. (2.4)
PP

The first equation implies conservation of mass which
will be the cause for the advection, even with a uniform
pressure. The heat equation includes both the cooling
function, .L(T,p) (see Refs. [5,15]), which is responsible
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for the bistability, and thermal diffusion. The heat
diffusivity is assumed from here on to be of the form
k=k,T*, with a constant.

We can relate this full set of equations to earlier works
which used a single thermal equation (Refs. [15,23]) by
assuming that (1) the pressure is constant; (2) the veloci-
ties are negligible.

The first assumption is reasonable if the dynamical
time (defined as the sound crossing time) is much smaller
than other relevant time scales (the cooling time and the
thermal diffusion time). This approximation is generally
very good in the astrophysical cases of interest (see Ref.
[18]) and is referred to as the “short wavelength limit”
(see Ref. [19]). In such a case, the pressure equilibrates to
a constant value, imposed on the boundaries, before any
significant thermal changes can occur, either by radiative
cooling or by heat transport (isobaric conditions). The
assumption is thus valid in the short wavelength limit
when a fixed pressure is imposed on the boundaries. The
second assumption is never strictly correct if there are
density variations in the system giving rise to fluid
motion because of mass conservation. However, in the
1D case a single thermal equation (sometimes called a
“reduced equation,” see Ref. [19]) is still available by in-
troducing a Lagrangian mass coordinate of the spatial
coordinate (Refs. 17,18]). In the 2D case a reduced equa-
tion with mass motion may still be viable if the motions
in the plane are suppressed by some mechanism (e.g.,
magnetic fields). In such a case, we may have a slab in
the x-y plane with fluid motions only in the z direction.

The first assumption reduces the above set of equations
for the 1D case into a single equation:

aZ _ 2 0*Z

Y F(Z,p)+Z om?’
with the following definitions: Z(r,t)=7°"'! and
F(Z,p)=—aT*/L(T,p). The variable m is a Lagrangian
space variable and A=1—1/a. Equation (2.5) is in a
nondimensional form. See Ref. [18] for details.

We have assumed in Refs. [15], [18], and [23], for the
sake of convenience, that the cooling function can be ap-
proximated by a simple form, giving bistability and a pos-
sibility of a reasonable fit with the actual radiative cool-
ing function. The form appropriate for (2.5) is

(2.5)

F(Z,p)=Z*|(Z,—Z)*—AXZ,—Z)—BIn

c

2

(2.6)

The nature of the equations is such that the roots of
the cooling function are steady uniform solutions of the
partial differential equation (PDE). For a certain pres-
sure region, in the isobaric case, we have three roots, two
stable solutions and an unstable one. Each one of these
roots is a “thermal phase,” having a different tempera-
ture and density but the same pressure (see Refs. [17,15]).
The exact form of the cooling function in the astrophysi-
cal cases is of course much more complicated (see Ref.
[5] and references therein), but the simple model de-
scribes the general results of the universality class. The
form of the pressure term in the cooling function guaran-
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tees that at the critical pressure (p =p_) the two phases
are energetically symmetric, therefore, there is no favor-
able phase. In systems where p >p,, the denser phase is
favorable and the systems develop in such a way as to in-
crease that phase’s extent. For p <p., the situation is
the opposite.

However, in general, the pressure is not necessarily
constant even in the short wavelength limit. In the
case of a temporally variable pressure imposed on the
boundaries, the system’s pressure will follow in time the
boundary value while remaining fairly uniform in space.
If the system is within rigid boundaries, the pressure will
remain rather uniform (if the short wavelength limit is
applicable), however, its average value does not have to
remain constant. As it was shown in Ref. [19], and as we
shall see further on, the pressure in such systems will
tend to approach the critical value.

The system of equations for the multidimensional hy-
drodynamic case cannot be treated in way similar to the
ones employed in Refs. [15] and [18]. We shall solve it
numerically and describe the results in the next section.
In the following subsections we shall attempt to obtain
general global results on the system using heuristic
analytical and statistical arguments. In the next subsec-
tion we derive in a heuristic way the correlation length
behavior for hydrodynamic systems. Then we shall find
some additional properties of such systems not directly
related to that derivation.

B. The eikonal equation and its consequences

Consider a reaction-diffusion equation in the following

scaled form:

du 2vr2

—= +eVu .

€5 fu)+eVu

This is a generic equation for the field ¥ and let the form
of the bistable function, f(u), be u (1—u)(u —a). Look-
ing at points on the interface between the phases of such
a classical Landau-Ginzburg model, it can be shown that
the following equation, referred to (see Ref. [22]) as the
“eikonal equation” exists:

N+eK=c .

2.7

(2.8)

This equation describes the velocity of a point on the
interface (N) as a function of the interface’s local curva-
ture (K) with the help of constants from the original
equation including €, a scaling constant, and c, the con-
stant velocity of an interface with zero curvature, caused
by the asymmetry between the phases (because a7 1).

We cannot case the general hydrodynamic multidimen-
sional case into a reduced equation of the type of (2.7).
However, it is possible to explore the multidimensional
problem for a special case in which the fronts are spheri-
cally symmetric, since the definition of a Lagrangian
coordinate is then possible similarly to 1D. The 1D case
gives rise to Eq. (2.5), which for a=1 has the generic
form. Looking now at a spherical D-dimensional inter-
face with radius r, we may define the Lagrangian coordi-
nate, m, by dm =cor? ~ldr, where ¢, is related to some
mean density of the phases. Proceeding as in Ref. [22]
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and noting that the PDE will have a first derivative
correction, related to the curvature (see also Ref. [15]) we
conjecture that the eikonal equation for this case will
have the following form:

N, +K=c,, , 2.9)

where the subscript m refers to velocities in m space and
€ has been scaled out for convenience. The velocity c,, is
the one a plane front would have in mass space
(dm =pdx). Thus, we assume essentially that the eikonal
equation for the purely diffusive general multidimension-
al case is similar in its form to the equation holding in a
system with advection but in the spherically symmetric
case. We stress again that in the last case all velocities
have to be expressed in mass space. Consequently, the
equation has meaning only for spherical fronts, because
in a more complex situation the Lagrangian coordinate
cannot be defined.

We have dm =N, dt, defining N,,. Comparing this
with the above mentioned definition of m we obtain
N, dt=cor® " dr.

We distinguish now between two types of behavior ac-
cording to the value of the pressure.

(i) For p —p,, we have c,, —0 (symmetric phases). The
front moves only because of its curvature (see Refs.

[15,20]). The eikonal equation has then the form
N,,=—K=—[(D —1)/r]. Thus

- @d! =cor?ldr . (2.10)
Integration yields

rD“—r(l,)H:——Dz—_lt , (2.1D

Co

which means that, as expected, the spherical cloud will
shrink because of curvature driven motion. Define now
the typical length scale of the growing domain, L, by
LP+1=pP+1—pD*1 Since the spherical cloud shrinks,
the growing domain is the ambient phase, whose typical
length scale can be represented by L. L(t) grows with

time in this curvature driven motion as

L(I)O:tl/(D+1). (212)

We get in 2D, L (1)=¢'/%, and in 3D, L (#) 1'%

(ii) For c,, >>K, which happens when p is far from p, ,
we have N,,=c,,. This is the case of pressure driven
motion. Now c,,dt =c,r? ~'dr, yielding

t. 2.13)

The cloud will grow or decay according to the sign of c,,
and defining again the typical length scale of the growing
domain as L?=|rP—rD| we get

L([)Octl/D )

Hence, in 2D L ()< '/2 and in 3D, L (z)=t'/.

All the above power law relations, derived for a spheri-
cal cloud, having meaning only as long as the cloud ex-
ists, i.e., before its possible disappearance. We now con-

(2.14)
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Jjecture that the power law behavior of L (¢) < t1/7 is the
same for both L, as defined above for the system with a
spherically symmetric front, and the correlation length, &,
in a general cloudy system viewed as a disordered medi-
um. § is related to the correlation function, C(r,?):

Cin,)=([T(x+r1,t)—{(T)][T(x,t)—(T)]),
by

(2.15)

Clr,t)xe 7% . (2.16)

The only rationale behind this conjecture is dimension-
al. L is the only relevant length scale in the system. In
the spherical cloud it is related to the radius, while in a
disordered system it is the correlation length. We shall
see in Sec. IIT that the numerical simulations indeed
confirm this assumption (up to the accuracy we can mea-
sure) as depicted in Fig. 1.

C. The ambient pressure and cloud extinction

In the case of experiments in the lab, we can usually
choose the boundary conditions and parameters if it is
necessary, for example, to fit the pressure to its critical
value. In the astrophysical context, however, the bound-
ary conditions are notoriously problematic and we have
essentially no control of the parameters. It is, thus,
relevant asking what the probability is of having in an ob-
served cloud system a certain parameter value, in particu-
lar, e.g., critical pressure. Consider an ensemble of
cloudy systems with a distribution of initial cloud sizes
and in different ambient pressures. Will we have a good
chance to observe systems close to the critical conditions,
or will they be scarce? This question is particularly
relevant to our previous works since it was usually as-
sumed that since clouds for which p =p, live much
longer and prevail, systems in which clouds are observed

172 g
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FIG. 1. Numerical result for the correlation growth in 2D
systems. The correlation length grows as a function of time,
giving different asymptotic power laws for the relation between
L and t. The heavy lines are the numerical results while the
thin ones are fits with the indicated power laws. Solid line cor-
responds to the case of pressure driven evolution and the dashed
line is for curvature driven case.
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have to be close to the critical conditions. It was also
shown by Ref. [19] that under certain conditions the
pressure equilibrates to the critical value.

Examine first one system from the ensemble having a
specific pressure. The correlation length behavior, as a
function of time, depends on how close is the system to
the critical point. As explained in the previous subsec-
tion, there are two limits to the behavior of the system’s
correlation length. Assume that the system is started
from some random initial configuration, containing struc-
tures on small scales. We expect, thus, that curvature
driven motion will be important as long as the small
structures are present. This is so because curvature driv-
ing is in such a case more important than pressure driv-
ing. In the case of Eq. (2.9), this means that K >>c,,.
Consequently we may consider this regime as one with
effectively critical pressure. Later on, when only large
structures remain, the role of the pressure in driving the
motion becomes dominant, Consequently,

(i) for small ¢ we are in a curvature driven motion regime
and the correlation length behaves like L, =a,¢t!/P+D,
where a; is a constant (see Fig. 2).

(ii) For large enough ¢ we are effectively far from the criti-
cal pressure, and we have L,=a,yt'’? with
y==+|p—p.|/? since c,, is to first order c,, <(p —p.)
and a, is a constant. The + sign refers to the case
p >p,, while the — is for the opposite case. We have
thus for any fixed ¢, two symmetric branches for L as a
function of y (see Fig. 3). We shall henceforth deal only
with the positive y branch, remembering that an
equivalent branch for y <0 exists too.

Assume now that the correlation length is given by a
dimensionless function f(x) of a dimensionless variable
X, containing time and y:

L=L,f(x). (2.17)

The temporal variation will enter only through x (i.e.,
x «<¢t) if we assume that scaling exists. Under this as-
sumption

fx>1)=x"P and f(x <«<1)=xVP*+D = (218)
log L
1
JLzayt®
-~
P
L|QiD 1
log t

FIG. 2. Correlation length growth in hydrodynamic systems.
Schematic drawing. For small ¢, the correlation length grows
while the curvature is dominant, thus L «¢!/?*+1) For large ¢
the correlation length grows under the influence of the pressure,
i.e., L «<t!/P_ In between there is a crossover from one behavior
to another. This happens at approximately ¢ =1, depending
on the pressure.
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FIG. 3. Correlation length for systems with different pres-
sures. Schematic drawing. y==|p —p.|'”P’. For y =0 the
correlation is always curvature dominated. At a distance of Ay
(depending on the time), there is a change in behavior to pres-
sure dominated growth. As y increases from this point, the
correlation growth as a function of time is larger.

x =1 is the crossover point where L, =L,. The cross-
over time is

a, D*+D
t,=|—— (2.19)
ay
and since x =1 at t =t we have
a, DX+D
= |— t. 2.20
x aly (2.20)
Thus
a, D2+D ,
Lo,=a, |— yl=b—D% Q.21
a,

We next look at an ensemble of systems of clouds
placed in different pressures. In Fig. 3 we can see the
general behavior of the correlation length as a function of
the boundary pressure. Around the center there is a re-
gion of width

Ayzza_lt—[l/(D2+D)]

(2.22)
a,
corresponding to pressure width
D
Ap=2 |- | ¢~(P/D*+D)] (2.23)
a;

where the correlation length behaves as if the pressure is
critical for any fixed ¢.

Consider now an initial distribution function of cloud
sizes for a prescribed ambient pressure given by the func-
tion g(R,p), defined in such a way that g dR dp is the
number of clouds in a given volume having initial sizes
between R, and R,+dR for a system in which the pres-
sure is between p and p +dp. We write

Ry
R§

&o z
Rg

g(Ry,p)= , (2.24)

with R} being the typical initial size of a cloud, g a suit-
able normalization constant, and g a dimensionless func-
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tion, whose p independence reflects the fact that we con-
sider the same cloud size distributions for all pressures.

One can now calculate the number of clouds in the
above mentioned central region of Fig. 3, where we have
curvature influenced behavior. It is equal to the integral
over the relevant pressure region (i.e., Ap) and over the
sizes of clouds that still exist (those with initial sizes
greater than the correlation length).

N.=Ap fL’]'g(L)dL . (2.25)

with L, =a,t''?*1!) a5 given above in (i). This can be

rewritten as
D

t"“/(D""l)Jh’(g) ,

Q

1

N,=2a, (2.26)

Q

2

with §=L,/R§.
Like g(u), h{(u) is a dimensionless function defined by

hw= [ “gwdv . (2.27)

The number of clouds in the y region in which there is
a pressure driven motion is

N,=2[7 [“g(L)dLap, 2.28
, 2pr/2fL2g( )dL dp (2.28)
where Ap/2=(a,/a,)Pt /P11 and L,=a,yt'/? as
given in (ii). This can be written also as

L,

P

R;

dp . (2.29)

N,=2g, [ Ap/2h1

Remembering that dp=Dy”"'dy (for y >0) and
defining another dimensionless function

hyw)= [ “dvP k(v (2.30)
gives
. i)
o Ry |
N,=2g, L —hy(8) (2.31)
i H

a-

Therefore, the ratio between the number of clouds in
the different regimes is
Ve phis)

N, 7 hy (&)

p

(2.32)

Examine now this result for two typically expected ini-
tial cloud size distributions. If we start with an exponen-
tial distribution, having a typical cloud size of R § initial-
ly, the ratio between the number of clouds in the curva-
ture driven regime and in the pressure driven one is pro-
portional to . Therefore, most clouds will seem to devel-
op according to pressure driven evolution (i.e., p
effectively different from p.) until the smallest correlation
length in the ensemble of systems will reach the typical
initial cloud size (i.e, {=~1). The majority of clouds will
seem then to develop according to curvature driven evo-
lution (i.e., p effectively p,).

In the case of an initial power law distribution, we have
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N
g(R(,)ocE‘—g-= N: =I—(14D). (2.33)

Thus, for a power law initial distribution, there will al-
ways be a constant ratio between the number of clouds in
the curvature driven regime and the pressure driven one.
It will be less than one (i.e., dominated by pressure driven
clouds) only if we have 1+D <T <2+D, since because
of obvious constraints, we must always have I' > 1+ D.

It is therefore not obvious that while examining an en-
semble of cloudy systems at different pressures, we will
indeed see, as time goes on, relatively more and more
clouds in the curvature driven regime. In the case of an
initial power law distribution of clouds, this assumption
will be correct only if there are enough small clouds (T is
large enough) to start with. When we have an initial dis-
tribution of clouds with a typical initial radius, such as an
exponential distribution, the assumption will be viable if
the correlation length in the curvature drive zone is
larger than the typical initial cloud size, which of course
happens always for large enough ¢.

D. Relation between fractal dimension, dynamical exponent,
pressure evolution and the cloud complex size

The difference between the model described here and
the usual reaction-diffusion type model [Eq. (2.7)] is
caused, as mentioned before, by the fact that the two
thermal phases have different densities and thus interface
motion has to be accompanied by advection of mass. This
is so in all but rather contrived cases, in which fluid
motion is suppressed in certain directions. In a system
with an average pressure different from the critical value,
one of the phases is more stable and will tend to grow.
Since the densities of the phases are different, the average
pressure cannot remain constant in systems with constant
volume and mass (rigid boundaries). In the case of free
boundaries, where the system is embedded in a constant
ambient pressure, the volume cannot remain constant,
i.e., the cloud complex will either have to shrink or to ex-
pand.

Consider a cloudy system characterized by a correla-
tion length L. A typical structure in the system, a “blob,”
should have a size of the order of L. As it was shown in
II B the mass transfer rate in a spherical blob evolving by
pressure driven interface motion(p#p,) is given by
dmg,;, =c,,dt. For a nonspherical typical blob the net
change is dmy,,, =PBc,,dt, with 8 being some geometrical
factor describing the average blob, which cannot be given
by these heuristic arguments.

The total mass transfer rate between the phases in the
entire system should, thus, be

A
dm =——_fc,,dt , (2.34)
4o
where A4/ A, is the ratio between the total interface area
of the growing phase, whose size is of the order of magni-
tude of the entire system, and the interface area of the
aforementioned average blob.

However, in a complex system of size S? (if scaling ex-

ists) in the area of objects the size of the system is related
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to the area of smaller objects (such as objects the size of
the correlation length) via a relation containing the frac-
tal dimension, a £t

s |

L (2.35)

The meaning of a; can be demonstrated by examining
what happens to an object when the size of the system is
rescaled. If the objects grows as the system is enlarged,
then a ;=D — 1. If the object is made up of small bodies,
whose number increases when the system expands, then
a;=D. In the case of a real cloud complex, we have, of
course, an intermediate dimension of D —1>a > D. The
total mass transfer rate between the phases is thus given
by
%

Bc,,dt .

I (2.36)

Consider now a system in which the dilute phase, hav-
ing a constant density, p,, occupies a volume V; and a
dense (p,) phase’s volume is V,. Assuming that the
masses of the phases are close to each other

m1=p1V1 2sz/2=n12 . (2.37)

This assumption is made in order to focus on systems,
which are not about to become uniform in very short
times (this happens when one phase’s mass is significantly
larger that the other’s one). In.addition, we assume that
p1<<p, as is the case in astrophysical applications. In
this case, the volume of the dilute phase is close to the
systems volume V' =V,+V¥,. We would like to examine
what happens to the system’s pressure as a function of
time in two cases, differing from each other by the nature
of the boundary conditions. In both cases, we assume
that we start from pressures quite close to the critical
pressure, p,.
With the above assumptions we have

(2.38)

The pressure is determined by the density and tempera-
ture of the dilute phase (p, and T;) via the perfect gas
equation of state. As those change, the pressure can
change too, and we have

dp _dp1 ATy

(2.39)
p P1 T,

Since we expect that significant global changes in the
system caused by mass transfer between the phases occur
on a time scale much longer than the cooling time we
may assume that thermal balance prevails, i.e.,
L(p;, T,)=0. This gives a relation between p, and T,.
Other assumption may give rise to other relations, the
important fact at this point being that (2.39) may be writ-
ten as

=P

P1

dp _ 9P
y4 P1

dT
=% P

(2.40)
dp; T,
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where the last equality defines 7).

In the case of rigid boundaries, the system mass and
volume remain constant, and the pressure can change.
Using (2.40) and (2.38) and substituting the expression
from (2.36) as dm; we obtain

a,— —a Cm
i’;i=ﬁs =g, ey Mlm 4, 2.41)

p1
Close to the critical point, to first order c,
=—colp —p.), where ¢y is a constant. Defining now
P=p —p,, (2.41) can be written to first order in [p —p.|:

B _Beos P gy
P P1

If the correlation length grows like L =L ,t% we find

(2.42)

i?zQ,f”fd: ) (2.43)

where Q, = —Bcosaf_DLo_afn/pl.

In the limit of p close to p. we may consider Q, as a
constant and integrate Eq. (2.43) under this assumption
to give the approximate result
/ 1—za £
T

p(t)y=pyexp , (2.44)

where 7=[Q, /(1—za[)]1/(1—za,).

This formula gives a relation between the pressure
change, the dynamic exponent and the fractal dimensions
of the clouds in closed systems (fixed mass and volume),
when the pressure is close to the critical one, i.e., after a
sufficient time.

In systems with free boundaries, placed in an ambient
gas with a constant pressure, the whole cloud complex
may grow or shrink. If the dilute phase is more (less)
stable its volume will increase (decrease) in time. Thus,
from (2.36) and using (2.38) (assuming that p, does not
vary significantly) to give dm,/m =D dS /S we get

P las =0, ar (2.45)

where Q,=(Bc,, /Dp,)L o °/ and is assumed constant.

This integrates to

—a D—a D —Qr
=Se O

)D l—zaf )

St (2.46)

This formula gives the relation between the dynamical
exponent, the fractal dimension and the system’s size in
the case of open boundaries and fixed pressure.

The two cases, as expressed by equations (2.44) and
(2.46), describe typical features of systems in which the
density of the two phases is different and fluid flow is
necessary to ensure mass conservation. In reaction-
diffusion systems without the constraint of a conservation
of a physical quantity, internal changes of the system
influence neither the size of the system nor the “external
field” (like the magnetic field in spin systems). The first
case of closed boundaries is better fit for numerical simu-
lations, however, in an astrophysical system we expect
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that the open boundary case is more realistic, at least on
smaller scales.

III. TWO-DIMENSIONAL NUMERICAL SIMULATIONS

Numerical simulations were performed to assess the
validity of the analytical estimates and to better under-
stand the 2D behavior, as compared to the completely
solvable 1D model. The simulations were performed on a
200X 200 square grid with a spacing of one length unit
(the Field length), using a well known finite difference
scheme: The alternating direction implicit (ADI) split-
ting method (see, e.g., Ref. [24]) for the solution of the
heat equation. The continuity and momentum equations
were solved using a standard explicit scheme, coupled to
the ADI scheme (which is implicit).

The initial conditions for most simulations were of a
random nature reflecting excitation on small scale (re-
gions with size of between 3X3 and 10X 10 grid cells
were assigned to have different densities, equal to one of
the stable phase densities). The ratio between the number
of cells of lower density and cells of high density was usu-
ally inversely proportional to the density ratio, giving
equal masses for both phases. Test runs were conducted
first with initial conditions appropriate to one spherical
cloud in the central region of the system.

Two types of boundary conditions were used. The
first, referred to as “free” boundary conditions is

ﬂ:

0
on ’
oT
= 3.1
an 0, (3.1
P =Po

on the boundary, where n denotes the normal direction.
The second type, referred to as “rigid walls” boundary
condition is, using the same notation:

v, =0,

aT

= =0, (3.2)
on

_a£=

on 0

on the boundary.

Conditions of type (3.2) are not natural when one has
in mind an astrophysical system but they give rise to
some interesting features brought about by the global
mass conservation and might apply on a large scale due
to magnetic or gravitational confinement (Ref. [19]). The
free boundary conditions are appropriate for a system
with no defined boundaries, constrained by an ambient
pressure of the surroundings. Here no mass conservation
is imposed and the system’s volume may change.

As a test we have computed with the help of our code
the evolution of a single circular “cloud” of radius R,.
The evolution is quantitatively different from that of the
purely thermal diffusive (no hydrodynamics) model (like
the one in Ref. [23]). For a pressure equal to its critical
value the evolution is driven by the curvature. We ex-
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pect, using (2.11) that

R3—R3«xt . 3.3)

If the pressure is different than critical, using (2.13), we
expect that
R3}—R?*«t . (3.4

The simulations, performed with free boundaries, gave
excellent agreement with (3.3) and (3.4). In Fig. 4, the ve-
locity field during the circular cloud evaporation is
shown. In the same problem, but with rigid boundaries,
the conserved total mass does not allow the cloud to
evaporate. This happens even if the initial pressure is
different from critical, since during the evolution of the
cloud, the pressure stabilizes on a value that would stop
the curvature driven curve shortening. The ultimate
pattern will arise when the pressure is such as to offset
the curve shortening tendency and the pattern is stable.
A straight single front with critical pressure is such a
possibility.

We have next tested the conjecture that domain
growth in a randomly initiated system will proceed ac-
cording to the same dynamical exponent as in the spheri-
cal case. Starting the system from random initial condi-
tions and keeping the external pressure equal to its criti-
cal value we get first a short transient, during which the
fronts themselves acquire their stable internal structure.
Next the small structures start merging, increasing slowly
the correlation length, or the “average” size of a cloud
(or intercloud region). The evolution of such a cloud
complex can be seen in a series of snapshots in Fig. 5.
Computing the correlation length from the correlation
function as in (2.15), a good fit to L «<¢!/3 is obtained, as
predicted by the heuristic arguments of Sec. II B.

Changing the ambient pressure from the critical value,
introduces growth driven by the asymmetry of the
phases. Again, a good fit to the prediction that correla-
tion length grows with time as L «t'/2 for two-
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FIG. 4. Evaporation of a 2D cloud. Around the rim of the
cloud we see large velocities of the evaporated cloud. Because of
conservation of mass, these velocities must decrease with the
distance from the center of the cloud.
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FIG. 5. A series of pictures describing the evolution of a
cloud complex. The correlation length grows in the four pic-
tures, slowly erasing the smaller details. In this series, p =p,
and therefore L «¢'/3. The upper left picture is chronologically
the first and the lower right the last.

dimensional system is found after a sufficiently long tran-
sient. Note that for the purely thermal diffusive case, the
domain growth of a nonconserved order parameter would
be L <t (Refs. [23,25]). In Fig. 1 the numerical results
for the above mentioned two cases are depicted.

When rigid wall boundary conditions are applied the
total mass is conserved. In Sec. II D (see also Ref. [19]) it
was predicted that under these circumstances the pres-
sure will approach its critical value. In Fig. 6 we depict
the change in the pressure in time in the numerical simu-
lation. The initial pressure is smaller than the critical
one, but as time passes the pressure approaches its criti-
cal value. Thus, although p#p_ as t — «, the pressure

1.0 T T T T T T T T T T T T T T T T T T

0.5+ .

\b r .
1{=y o

g 00 ]

3 Initial Pressure .

= 3 Front Stabilization B

S I Stabilization ]

-0.51+ .

L -

_10_ ......... | S S 1 . | " 1 ]

o} 1 2 3 4

FIG. 6. Pressure equilibration in a bounded system. As pre-
dicted in [9] and shown here in (2.44), the pressure approaches
the critical value in systems with rigid boundaries (imposing
mass conservation). The log in both axes is to the base 10.
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gets close enough to p. (relatively to the curvature effect)
for L to be L «t!/3, In the analytical results, we have
seen that there exists a relation between the pressure
change, the fractal dimension, and the dynamical ex-
ponent, z=1/n. The asymptotic fit to formula (2.44) is
good, but the accuracy with which a, can be measured is
unfortunately very poor for the present resolution. It
seems that the resolution has to be increased by an order
of magnitude in order to be able to infer a reliable result
on a;. This requires a substantial increase in computing
resources (the runs reported here take a few hours CPU
on a RISC computer workstation).

IV. SUMMARY

We conclude by briefly summarizing the main findings
of this paper. A model of a fluid medium with heat trans-
port and a nonlinear bistable heat source term was inves-
tigated here analytically and numerically. This work is a
continuation of a series of investigations (Refs. [15], [18],
and [23]). Here, in addition to those previous works, the
effects of fluid advection are included in the multidimen-
sional case.

Qualitatively, the picture described in our first work
[15] still holds. The two phase medium develops in time
with small structures gradually merging and forming
larger uniform regions. The complex boundaries become
smoother and shorter. This evolution may be affected
by spatiotemporal persistent perturbations or by
confinement of the system in a closed “box.” In the
former case complex pattern may persist for very long
times like in the purely thermal case [23]. Mass conser-
vation in the latter case does not allow uniformization of
the whole system and a pattern with a simple structure
the size of the whole system persists (Ref. [19]).

Quantitatively, we find here that the dynamical ex-
ponents governing the growth of the correlation length in
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TABLE 1. Asymptotic behavior of correlation length for
different cases.

System Results
Dimension  Pressure v L(t)«x Remarks

1 =p. #0 log(t) front interaction
1 #p. #0 !

D =p, = 172 diffusion only
D #p. =0 t diffusion only
D =p. #0  ¢P*D  cyrvature driven
D #p, #0 t'/P pressure driven

unforced systems differ from the one found for the purely
thermal-diffusive case. The analytical and statistical esti-
mates, based on heuristic arguments, predict the correla-
tion length growth as a function of time and numerical
simulations support these predictions for the two-
dimensional case.

The various cases are summarized in Table. 1.

These values of the dynamical exponents fit well the
2D numerical results only for sufficiently large times.
Even when p¥#p,, for small enough L the curvature can
be high enough as to be the major factor in the evolution.

In the case of rigid wall boundaries, we have found a
way to show (in a different way from Ref. [19]), and
verified it numerically, that the pressure as  — o goes to
the critical pressure, where again the curvature plays the
main role.
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FIG. 5. A series of pictures describing the evolution of a
cloud complex. The correlation length grows in the four pic-
tures, slowly erasing the smaller details. In this series, p =p,
and therefore L o t'/3. The upper left picture is chronclogically
the first and the lower right the last.



